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Abstract

The Hirota method to get the soliton solutions for a nonlinear partial differential equation is the most
efficient direct technique researchers use worldwide. This article reviews and explores Hirota’s direct
technique on the KdV equation, which Hirota initially used to clarify his method. This method uses
the perturbation technique to get the mathematical formulation for the N -soliton solution. We use the
perturbation to the KdV equation to get one-soliton, two-soliton, and three-soliton solutions and the
generalized N -soliton solution. We show the bilinear form for the selected KdV equation and the other
equations used in this work. Also, we investigate the concerned method by illustrating three well-known
equations, the Kadomtsev-Petviashvili (KP) equation, the Boussinesq equation, and the KP equation
with variable coefficient. Solitons are formed due to neglecting the nonlinearity and dispersion effect.
Thus, they play an essential role in analyzing shallow water waves and occur in fields such as plasma
physics, oceanography, marine engineering, fluid dynamics, dusty plasma, and other nonlinear sciences.
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1 Introduction

In physics and mathematics, a nonlinear partial
differential equation (PDE) is an equation contain-
ing partial derivatives and nonlinear terms. PDEs
depict many physical systems, from fluid dynam-
ics to plasma physics and shallow water waves to
oceanography, and have been used to solve dif-
ferent conjectures, such as the Poincaré conjec-
ture and the Calabi conjecture. There is no gen-

eral technique to solve nonlinear PDEs; therefore,
we study every equation as an individual prob-
lem. Several techniques, such as Darboux trans-
formation [1, 2], Bäcklund transformation [3, 4],
Hirota bilinear technique [5–9], simplified Hirota
method [10–13], Lie symmetry analysis [14, 15],
Inverse scattering method [16, 17], Pfaffian tech-
nique [18,19] and several other techniques are be-
ing used to study the nonlinear PDEs.

Among the several methods to study nonlinear
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PDEs, the Hirota direct method [5] is the most ef-
ficient tool for constructing multi-soliton solutions
of an integrable nonlinear PDE. Hirota method
provides a direct approach to get the exact so-
lutions such as solitons, breathers, rogue waves,
lumps, and others. In this method, the critical
step is to convert the equation into a bilinear form
suggested by Hirota and then apply the depen-
dent variable transformation to obtain the multi-
solitons of the nonlinear PDEs. As the concerned
method is applied to integrable nonlinear PDE,
confirming the integrability of a PDE plays an im-
portant role. Investigation of integrability to the
nonlinear PDEs helps to generate multi-solitons as
the integrable PDEs carry exponentially localized
solutions. We use the Painlevé test [20] to check
the complete integrability for a nonlinear PDE and
use symbolic software such as Mathematica/Maple
to perform such a tedious analysis. In 2006, Bald-
win and Hereman [11] gave a symbolic computa-
tion for Painlevé analysis using Mathematica by
applying the WTC-Krushkal method [21]. Sev-
eral researchers and scientists have been attracted
to construct soliton solutions derived from nonlin-
ear PDEs due to their applicability in exhibiting
practical features in nonlinear dynamics and ocean
engineering dimensions.

This investigation explores Hirota’s direct
method on the KdV equation, which Hirota ini-
tially used to clarify his method. We apply the
perturbation technique to get the mathematical
formulation for soliton solutions as applied in this
method. Also, we construct one soliton, two soli-
tons, and three solitons and their generalized N -
soliton solution. We show the bilinear form for the
selected KdV equation and three well-known equa-
tions, the Kadomtsev-Petviashvili (KP) equation,
the Boussinesq equation, and the KP equation
with variable coefficient. Since solitons are formed
due to ignoring the nonlinearity and dispersion ef-
fect; thus, they play an essential role in analyzing
shallow water waves. Furthermore, occur in sev-
eral fields such as plasma physics, oceanography,
marine engineering, dusty plasma, fluid dynamics,
and other sciences.

The structure of this work is as follows: Next
section investigates the Hirota bilinear technique
on the KdV equation. In Section 3, we ap-
ply Hirota’s direct method to the different non-
linear PDEs, such as the Boussinesq equation,
the Kadomtsev-Petviashvili equation, and the KP

equation with variable coefficient, to construct the
multiple solitons. In the last section, we conclude
the work and investigation.

2 Hirota’s Direct Method

To understand this method, we explore the steps
of this technique to the integrable nonlinear Ko-
rteweg–De Vries (KdV) equation

ut + 6uux + uxxx = 0; u = u(x, t). (1)

We consider the solution for the equation (1) using
Cole-Hopf transformation, which is a logarithmic
transformation for the dependent variable u as

u = R(logf)xx, (2)

where f is a function of x and t and the coeffi-
cient R to be determined later. We can write the
equation (2) in another form as

u = wxx where w = R(logf). (3)

Hirota [5] creates the bilinear form of the equation
(1) by substituting,

u = eαi , (4)

into an equation with linear terms of Eq. (1) by
considering the value of αi (phase variable) as

αi = kix+ wit, (5)

where ki and wi are the constants (wave num-
bers) and the dispersions (frequencies), respec-
tively. Thus, we get wi in terms of ki, known as
dispersion relation which relates the wave num-
bers to their frequencies as

wi = −k3i . (6)

Next, we find the value of R in equation (2). For
this, we consider the auxiliary function f in the
Cole-Hopf transformation as

f(x, t) = 1+eα1 = 1+ek1x+w1t = 1+ek1x−k
3
1t, (7)

Furthermore, substitute in the equation (1).
Then, on solving for R, we get R=2.
So, the logarithmic transformation becomes

u = 2(logf)xx. (8)

Now, from (3), we have

ut = wxxt, ux = wxxx and uxxx = wxxxxx,
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putting the above expressions into Eq. (1), we get

wxxt + 6wxxwxxx + wxxxxx = 0, (9)

on integrating w.r.t. ′x′

wxt + 6

∫
wxxwxxx∂x+ wxxxx = 0. (10)

We compute integral term in equation (10) with
constant of integration as zero

I =

∫
wxxwxxx∂x =

1

2

∫
2wxxwxxx∂x =

1

2
w2
xx,

(11)
substituting the value of I in equation (10), we get

wxt + 3w2
xx + wxxxx = 0. (12)

As we have w = 2(logf), we can get the followings:

wx = 2
fx
f
, wxt = 2

ffxt − fxft
f2

,

wxx =
ffxx − f2x

f2
,

wxxx = 2
2f3x − 3ffxfxx + f2fxxx

f3
,

wxxxx = 2
−6f4x + 12ffxfxx − 3f2f2xx − 4fxfxxx

f4
,

putting all the above values in (12), we get a
quadratic equation in f as

−2
fxft
f2

+ 2
fxt
f

+ 6
f2xx
f2
− 8

fxfxxx
f2

+ 2
fxxxx
f

= 0,

or

−fxft + fxt + 3f2xx − 4fxfxxx + ffxxxx = 0, (13)

which can be written in terms of the operator D
as

(DxDt +D4
x)f.f = 0. (14)

This equation (14) is called the Hirota bilinear
form for equation (1) and the D-operator is de-
fined as

Dl
xD

m
t g.h = (∂x − ∂x′)l(∂t − ∂t′)mg.h|x′=x,t′=t,(15)

where g = g(x, t) and h = h(x′, t′) are being dif-
ferential functions and l and m are being non-
negative integer.
As we have

u = 2(logf)xx =
2(ffxx − f2x)

f2
=
G

F
, (16)

where G = 2(ffxx − f2x) and F = f2. The solu-
tion does not need to be the same if we take the
solution of the equation (1) initially as u = G

F .
Solving equation (16) for f by putting u = 0, we
get

f = exC1(t)C2(t).

On taking the constants C1(t) = 0 and C2(t) = 1,
gives zero-soliton solution as

f0 = 1. (17)

Now we use the perturbation technique; we take
f as a power series with a small parameter ε as

f = f0 + εf1 + ε2f2 + ε3f3 + · · ·+∞,

with Eq. (17)

f = 1+εf1+ε2f2+ε3f3+ · · ·+εnfn; n→∞.
(18)

By putting f from (18) in the equation (14), we
have

(DxDt+D
4
x)(1+εf1+ε2f2+ε3f3+· · · )2 = 0, (19)

(DxDt +D4
x)(1 + ε(2f1) + ε2(2f2 + f1f1) + · · · = 0.

(20)
Now collecting the terms of each order of ε equat-
ing to zero, we get
ε : (DxDt +D4

x)f1 = 0
ε2 : 2(DxDt +D4

x)f2 = −(DxDt +D4
x)f1.f1

ε3 : 2(DxDt+D4
x)f3 = −2(DxDt+D4

x)f1.f2
...
For D-operator, we have the following relations as

DxDtf.1 = fxt = DxDt1.f, (21)

D4
xf.1 = fxxxx = D4

x1.f, (22)

Dm
x D

n
t e
θ1eθ2 = (k1 − k2)m(w1 − w2)

neθ1+θ2 , (23)

where θi = kix+wit+θ0i with θ0i (phase constant)
→ 0.
Now for the coefficient of ε:

(DxDt +D4
x)f1 = 0,

DxDtf1.1 +D4
xf1.1 = 0,

(f1)xt + (f1)xxxx = 0,

∂

∂x

∂

∂t
f1 +

∂4

∂x4
f1 = 0,

∂

∂x

(
∂

∂t
+

∂3

∂x3

)
f1 = 0,
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which is a linear PDE for f1. Thus the one-soliton
solution is given by

f1 = eθ1 , (24)

where
θ1 = P1x+Q1t,

with
Q1 = −P 3

1 .

(Above expression for θ1 is same as phase variable
α1 in equation (5) for i = 1 with condition as in
equation (6).)
Again, for the coefficient of ε2:

2(DxDt +D4
x)f2 = −(DxDt +D4

x)f1.f1

= −(DxDt +D4
x)eθ1 .eθ1

= 0 (25)

since we have (DxDt + D4
x)eθ1 .eθ1 = 0 from Eq.

(23).
Therefore, we can choose f2 = 0, such that expan-
sion of f in the equation (18) may be truncated to
a finite sum as

f = 1 + εf1. (26)

Taking ε = 1 (ε can be absorbed into the phase
constant θ01).

f = 1 + f1 = 1 + eθ1 . (27)

This is an exact solution of the bilinear form equa-
tion (14), which conforms one-soliton solution
with the equation (8) as

u = 2
(

log(1 + eθ1)
)
xx

= 2

(
eθ1P1

1 + eθ1

)
x

= 2

(
(1 + eθ1)eθ1P 2

1 − P1e
θ1 .eθ1P1

(1 + eθ1)2

)
=

2P 2
1 e

θ1

(1 + eθ1)2
(28)

or

u =
2P 2

1 e
θ1

1 + e2θ1 + 2eθ1
=

2P 2
1

e−θ1 + eθ1 + 2

=
P 2
1

eθ1+e−θ1
2 + 1

=
P 2
1

cos θ1 + 1

=
P 2
1

2
sech2

(
θ1
2

)
, (29)

where θ1 = P1x+Q1t with Q1 = −P 3
1 ; P1 and Q1

are arbitrary constants.

If we apply the principle of linear superposition
for the solution f1, we have

f1 = eθ1 + eθ2 , (30)

where θ1 = P1x + Q1t and θ2 = P2x + Q2t with
dispersion relation as Q1 = −P 3

1 and Q2 = −P 3
2 .

Now again, for the coefficient of ε2:

2(DxDt + D4
x)f2 = −(DxDt +D4

x)f1.f1

= −(DxDt +D4
x)(eθ1 + eθ2)2

= −2(DxDt +D4
x).eθ1 .eθ2

= −2(DxDte
θ1 .eθ2 +D4

xe
θ1 .eθ2

= −2((P1 − P2)(Q1 −Q2)e
θ1 .eθ2

+ (P1 − P2)
4eθ1 .eθ2), (31)

using (23), we get

= −2(P1−P2){(Q1−Q2)+(P1−P2)
3}eθ1+θ2 . (32)

We may consider the solution of Eq. (32) as

f2 = a12e
θ1+θ2 (33)

where the coefficient a12 using (23) is

a12 =
−2(P1 − P2){(Q1 −Q2) + (P1 − P2)

3}
2(P1 + P2){(Q1 +Q2) + (P1 + P2)3}

=
−(P1 − P2){(−P 3

1 + P 3
2 ) + (P1 − P2)

3}
(P1 + P2){(−P 3

1 − P 3
2 ) + (P1 + P2)3}

=
−(P1 − P2){−3P 2

1 + 3P1P
2
2 }

(P1 + P2){3P 2
1 + 3P1P 2

2 }

=
(P1 − P2)

2

(P1 + P2)2
. (34)

Substituting f1 and f2 in equation of coefficient
for ε3

2(DxDt + D4
x)f3 = −2(DxDt +D4

x)f1.f2

= −2a12(DxDt +D4
x)(eθ1 + eθ2).eθ1+θ2

= −2a12(DxDt +D4
x)e2θ1+θ2 .eθ1+2θ2

= 0. (35)

So, we may choose f3 = 0; therefore, the expan-
sion of f in the equation (18) may be truncated to
a finite sum as

f = 1 + εf1 + ε2f2 = 1 + ε(eθ1 + eθ2) + ε2a12e
θ1+θ2 .

(36)
Thus, for ε = 1, we have

f = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (37)
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which is an exact solution of Eq. (14) that con-
forms a two-soliton solution by the Eq. (8).
Similarly, we can find a three-soliton solution by
choosing

f1 = eθ1 + eθ2 + eθ3 , (38)

where θi = Pix+Qit for i = 1, 2, 3 with dispersion
relation as Qi = −P 3

i .
So, we get the expansion of f in the equation (18)
for ε = 1 as

f = 1 + f1 + f2 + f3

= 1 +
3∑
i=1

eθi +
3∑

1=i<j

aije
θi+θj + a123e

θ1+θ2+θ3 ,(39)

where
a123 = a12a13a23, (40)

and

aij =
(Pi − Pj)2

(Pi + Pj)2
. (41)

By the function f in Eq. (39), we get the three-
soliton solution with Eq. (8).
Hence, by repeating the same procedure, we can
create a closed expression for the auxiliary func-
tion f to get the N-soliton solution as

f =
∑
µ=0,1

exp

 N∑
i=1

µiηi +
N∑

1=i<j

Aijµiµj

 , (42)

where
∑

µ=0,1 indicates the summation of all pos-
sible combinations for µi = 0, 1 for 1 ≤ i ≤ N .
For N = 1, we have µ1 = 0, 1 so f = 1 + eη1

For N = 2, we have µ1 = 0, 1 and µ2 = 0, 1. So
there will be four combinations of µ1 and µ2 as
(0, 0), (0, 1), (1, 0) and (1, 1), thus the function f
will be as

f = 1+eη1+eη2+eA12+η1+η2 = 1+eη1+eη2+a12e
η1+η2 ,

with a12 = eA12 .
For N = 3, we have µ1, µ2, µ3 = 0, 1 so the total
combinations for µ1, µ2, and µ3 will be eight as
{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1),
(1,1,0), (1,1,1)}, thus the expression for f will be
as

f = 1 + eη1 + eη2 + eη3 + eA12+η1+η2 + eA13+η1+η3

+eA23+η2+η3 + eA12+A13+A23+η1+η2+η3 ,

or

f = 1 + eη1 + eη2 + eη3 + a12e
η1+η2 + a13e

η1+η3

+a23e
η2+η3 + a123e

η1+η2+η3 ,

with aij = eAij and a123 = eA12+A13+A23 .

3 Application of Hirota method
to the nonlinear PDEs

The above section discusses the procedure for Hi-
rota’s direct method with different steps to get
N -soliton solutions. We can summarise the steps
as

• Considering the phase variable θi depending
on the given nonlinear PDE

• Finding dispersion relation, a relation be-
tween frequencies and wave numbers.

• Finding Cole-Hopf transformation u =
R(logf)xn for the given nonlinear PDE,
where n is the order of partial differentia-
tion w.r.t. x depending upon the balance of
higher order term and nonlinear term in the
PDE.

• Finding the Bilinear form of the nonlinear
PDE.

• Apply the N -soliton solutions formulation
for the auxiliary function f to the bilinear
form to get the values of the constants ap-
pearing in f .

– For N = 1, we take f = 1 + eθ1 where
θ1 is the phase variable.

– For N = 2, we get f = 1 + eθ1 + eθ2 +
a12e

θ1+θ2 where θi; i = 1, 2 are phase
variables and a12 is constant.

– For N = 3, we have f = 1 +
∑3

i=1 e
θi +∑3

1=i<j aije
θi+θj + a123e

θ1+θ2+θ3 where
θi; i = 1, 2, 3 are phase variables and
aij ; 1 ≤ i < j ≤ 3, and a123 are con-
stants.

• Computing soliton solutions as u =
R(logf)xn concerning the choice of f as
above for different N .
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3.1 (2+1)-dimensional Kadomtsev-
Petviashvili equation

We have the integrable KP equation [22,23] as

(ut + 6uux + uxxx)x + uyy = 0 (43)

• We consider the phase variable θi = pix +
qiy − wit

• We get the dispersion relation by putting
u = eθi in the linear terms of the Eq. (43)

as wi =
p4i+q

2
i

pi
.

• We consider the solutions as Cole-Hopf
transformation u = R(logf)xx, where we get
R = 2 by putting the function f = 1 + eθ1

into the equation (43).

• We create the Bilinear form of the equation
as (D4

x +DxDt +D2
y)f.f = 0.

• We obtain directly the soliton solutions for
the function f as

– For N = 1, we take f = 1 + eθ1 where

θ1 = p1x + q1y −
(
p41+q

2
1

p1

)
t, so we get

one-soliton solution as u = 2(log(1 +

eθ1))xx =
2k21e

θ1

(1+eθ1)
2

– For N = 2, we have f = 1 +
eθ1 + eθ2 + a12e

θ1+θ2 where θi =

pix + qiy − (
p4i+q

2
i

pi
)t; i = 1, 2 and

compute the constant as a12 =
3p21p

2
2(p1−p2)2−(p1q2−p2q1)2

3p21p
2
2(p1+p2)

2−(p1q2−p2q1)2
.Thus we get a

two-soliton solution as u = 2(log(1 +
eθ1 + eθ2 + a12e

θ1+θ2))xx.

– For N = 3, we have f = 1 +
∑3

i=1 e
θi +∑3

1=i<j aije
θi+θj + a123e

θ1+θ2+θ3 where

θi = pix + qiy − (
p4i+q

2
i

pi
)t; i = 1, 2, 3

and a123 = a12a13a23 with aij =
3p2i p

2
j (pi−pj)2−(piqj−pjqi)2

3p2i p
2
j (pi+pj)

2−(piqj−pjqi)2
; 1 ≤ i < j ≤ 3.

Thus we get a three-soliton solution by
u = 2(logf)xx.

3.2 (1+1)-dimensional Boussinesq
equation

We have the integrable Boussinesq equation [24]
as

utt − uxx − 3(u2)xx − uxxx = 0 (44)

• We consider the phase variable θi = pix−wit

• We get the dispersion relation by putting
u = eθi in the linear terms of the equation

(44) as wi = −
√
p2i + p4i .

• We consider the solutions as Cole-Hopf
transformation u = R(logf)xx, where we get
R = 2 by putting the function f = 1 + eθ1

into the equation (44).

• We create the Bilinear form of the Eq. (44)
as (D2

t −D2
x −D4

x)f.f = 0.

• We get directly the soliton solutions for the
function f as

– For N = 1, we take f = 1 + eθ1 where

θ1 = p1x +
(√

p21 + p41

)
t, so we get

one-soliton solution as u = 2(log(1 +

eθ1))xx =
2p21e

θ1

(1+eθ1)
2 .

– For N = 2, we have f = 1 +
eθ1 + eθ2 + a12e

θ1+θ2 where θi =

pix +
(√

p2i + p4i

)
t; i = 1, 2 and

compute the constant as a12 =√
1+p21

√
1+p22−(2p21−3p1p2+2p22+1)√

1+p21

√
1+p22−(2p21+3p1p2+2p22+1)

.Thus we

get a two-soliton solution as u =
2(log(1 + eθ1 + eθ2 + a12e

θ1+θ2))xx.

– For N = 3, we have f = 1 +
∑3

i=1 e
θi +∑3

1=i<j aije
θi+θj + a123e

θ1+θ2+θ3 where

θi = pix +
(√

p2i + p4i

)
t; i = 1, 2, 3

and a123 = a12a13a23 with aij =√
1+p2i

√
1+p2j−(2p

2
i−3pipj+2p2j+1)

√
1+p2i

√
1+p2j−(2p2i+3pipj+2p2j+1)

; 1 ≤ i <

j ≤ 3. Thus we get a three-soliton so-
lution by u = 2(logf)xx.

3.3 (2+1)-dimensional KP equation
with variable coefficient

Integrable KP equation with variable coefficient
[25,26] is given by

(ut + uux + uxxx)x + 3uyy + g(t)uxy = 0, (45)

• We consider the phase variable θi = pix +
qiy − wi(t)

• We get the dispersion relation by putting
u = eθi in the linear terms of the equation

(45) as wi =
∫ (

p3i + g(t)qi +
3q2i
pi

)
dt.
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• We consider the solutions as Cole-Hopf
transformation u = R(logf)xx, where we get
R = 12 by putting the function f = 1 + eθ1

into the equation (45).

• We create the Bilinear form of Eq. (45) as
(D4

x + g(t)DxDy +DxDt + 3D2
y)f.f = 0.

• We get directly the soliton solutions for the
function f as

– For N = 1, we have f = 1 + eθ1

where θ1 = p1x + q1y − w1(t), so
we get one-soliton solution as u =

12p21
ep1x+q1y−w1(t)

(ew1(t)+ep1x+q1y)2
.

– For N = 2, we take f = 1 +
eθ1 + eθ2 + a12e

θ1+θ2 where θi =
pix + qiy − wi(t); i = 1, 2 and
compute the constant as a12 =
p22(p

2
1(p1−p2)2−q21)+2p1p2q1q2−p21p22

p22(p
2
1(p1+p2)

2−q21)+2p1p2q1q2−p21p22
.Thus we

get a two-soliton solution as u =
12(log(1 + eθ1 + eθ2 + a12e

θ1+θ2))xx.

– For N = 3, we have f = 1 +
∑3

i=1 e
θi +∑3

1=i<j aije
θi+θj + a123e

θ1+θ2+θ3 where
θi = pix + qiy − wi(t); i = 1, 2, 3
and a123 = a12a13a23 with aij =
p2j (p

2
i (pi−pj)2−q2i )+2pipjqiqj−p2i p2j

p2j (p
2
i (pi+pj)

2−q2i )+2pipjqiqj−p2i p2j
; 1 ≤ i <

j ≤ 3. Thus we get a three-soliton so-
lution by u = 12(logf)xx.

4 Conclusions

In this work, we investigated Hirota’s direct
method on the KdV equation using the per-
turbation technique to get the N -soliton solu-
tion. We showed the perturbation technique to
the KdV equation to generate one-soliton, two-
soliton, and three-soliton solutions. We explored
the closed expression of the N -soliton solution for
the same. We created the bilinear form for the
KdV equation and the other equations used in
this work. Investigation of the concerned method
has illustrated three well-known equations, the
Kadomtsev-Petviashvili equation, the Boussinesq
equation and the KP equation with variable co-
efficient. Solitons are formed due to neglecting
the nonlinearity and dispersion effect. Thus, they
play an essential role in analyzing shallow water
waves and occur in fields such as plasma physics,
oceanography, dusty plasma, marine engineering,
fluid dynamics, and other nonlinear sciences.
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